6 research outputs found

    New lattice-based protocols for proving correctness of a shuffle

    Get PDF
    In an electronic voting procedure, mixing networks are used to ensure anonymity of the casted votes. Each node of the network re-encrypts the input and randomly permutes it in a process named shuffle, and must prove that the process was applied honestly. State-of-the-art classical proofs achieve logarithmic communication complexity on N (the number of votes to be shuffled) but they are based on assumptions which are weak against quantum computers. To maintain security in a post-quantum scenario, new proofs are based on different mathematical assumptions, such as lattice-based problems. Nonetheless, the best lattice-based protocols to ensure verifiable shuffling have linear communication complexity on N. In this thesis we propose the first sub-linear post-quantum proof for the correctness of a shuffe, for which we have mainly used two ideas: arithmetic circuit satisfiability and Benes networks to model a permutation of N elements

    Shorter lattice-based zero-knowledge proofs for the correctness of a shuffle

    Get PDF
    In an electronic voting procedure, mixing networks are used to ensure anonymity of the casted votes. Each node of the network re-encrypts the input list of ciphertexts and randomly permutes it in a process named shuffle, and must prove (in zero-knowledge) that the process was applied honestly. To maintain security of such a process in a post-quantum scenario, new proofs are based on different mathematical assumptions, such as lattice-based problems. Nonetheless, the best lattice-based protocols to ensure verifiable shuffling have linear communication complexity on N, the number of shuffled ciphertexts. In this paper we propose the first sub-linear (on N) post-quantum zero-knowledge argument for the correctness of a shuffle, for which we have mainly used two ideas: arithmetic circuit satisfiability results from Baum et al. (CRYPTO'2018) and Beneš networks to model a permutation of N elements. The achieved communication complexity of our protocol with respect to N is O(v(N)log^2(N)), but we will also highlight its dependency on other important parameters of the underlying lattice ingredients.The work is partially supported by the Spanish Ministerio de Ciencia e Innovaci´on (MICINN), under Project PID2019-109379RB-I00 and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). Authors thank Tjerand Silde for pointing out an incorrect set of parameters (Section 4.1) that we had proposed in a previous version of the manuscript.Postprint (author's final draft

    Basic guidelines for implementing a Legal Clinic at the UCM School of Law

    No full text
    Este proyecto pretende ser un punto de partida para la implantación efectiva de la metodología docente de la Clínica jurídica en la Facultad de Derecho de la Universidad Complutense de Madrid.This project is meant to be a turning point for the implementation of a legal clinic as a teaching innovation tool at the UCM Law School.Depto. de Derecho Internacional, Eclesiástico y Filosofía del DerechoFac. de DerechoFALSEsubmitte

    reseña del libro Paremias e indumentaria en Refranes y Proverbios en Romance (1555) de Hernán Núñez. Análisis paremiológico, etnolingüístico y lingüístico

    No full text
    corecore